時系列解析

統計学One Point 4

柴田 里程

2017年9月9日

共立出版

2,420円(税込)

科学・技術

時系列解析待望の書! これまでに時系列解析を理解しようとして挫折してきた読者も,本書で時系列解析の本質が理解できる!  時系列解析でなければ解決できない問題は,工学や経済学はもちろん,天文学,生態学,環境学など多くの分野にあります。また,時系列解析の先には空間データ解析への応用も控えています。このようにさまざまな発展の可能性を秘めた時系列解析ですが,本書はその基礎を学ぶのに最適な一冊といえます。  本書では,まず弱定常時系列に焦点を絞ることで,時間領域と周波数領域の関係を扱えるようになることを最初の目的とし,その上で弱定常時系列の分解と予測を学びます。次に,時系列解析の実践において必須である,近似としての時系列モデルを取り上げます。そこにはAICの生い立ちも秘められています。最後に,多変量時系列の解析に移ります。多変量時系列モデルを状態空間表現と絡めながら,多変量による問題をどうやって解決していくのかを取り上げます。 第1章 時系列 1.1 定常性   1.1.1 自己相関係数と偏自己相関係数 1.2 スペクトル表現   1.2.1 時系列のスペクトル表現   1.2.2 自己共分散関数のスペクトル表現 1.3 スペクトル表現の具体例 第2章 弱定常時系列の分解と予測 2.1 ウォルドの分解定理とMA(∞)表現,AR(∞)表現 2.2 ウォルドの分解定理の証明とその理解   2.2.1 ウォルドの分解定理の証明   2.2.2 純決定的と純非決定的   2.2.3 イノベーション   2.2.4 条件付き期待値と最良予測 2.3 最良線形予測の予測誤差 第3章 時系列モデル 3.1 ARモデル   3.1.1 推定   3.1.2 AICによるモデル選択   3.1.3 関連したモデル 3.2 MAモデル 3.3 ARMAモデル 3.4 その他のモデル 第4章 多変量時系列 4.1 多変量時系列の性質 4.2 時系列どうしの関係   4.2.1 スペクトル密度行列とクロススペクトル密度行列   4.2.2 多重コヒーレンシー   4.2.3 偏コヒーレンシー 4.3 多変量ARモデルと多変量ARMAモデル 4.4 状態空間モデル   4.4.1 状態ベクトルの推定と予測   4.4.2 パラメータの推定 4.5 状態空間モデルと多変量ARMAモデル   4.5.1 直接表現とマルコフ表現   4.5.2 同定可能性 参考文献 索  引

本棚に登録&レビュー

みんなの評価(0

--

読みたい

5

未読

1

読書中

0

既読

0

未指定

17

書店員レビュー(0)
書店員レビュー一覧

みんなのレビュー

レビューはありません

Google Play で手に入れよう
Google Play で手に入れよう
キーワードは1文字以上で検索してください