パターン認識と機械学習 下

ベイズ理論による統計的予測

C.M.ビショップ

2008年7月31日

シュプリンガー・ジャパン

8,580円(税込)

パソコン・システム開発

ベイズ理論に基づく統計的予測技術は、計算アルゴリズムの開発と計算機の性能向上により、近年、急速に進展してきた。本書は、このベイズ理論に基づいた統一的な視点から、機械学習とパターン認識の様々な理論や手法を解説した教科書である。下巻では、上巻の基礎的な話題を発展させた様々な手法を扱う。まず、予測精度の高さで注目を集めたサポートベクトルマシンと、今や幅広い領域で使われているカーネル法を説明する。次に、高度な確率モデルを表現するベイジアンネットなどのグラフィカルモデルや、潜在変数を扱うEMアルゴリズムを紹介する。その後、ベイズ理論の適用範囲を広げた変分ベイズ法とMCMC法について触れ、次元削減や時系列の扱いといった話題を詳説する。最後に、複数のモデルを結合するブースティングなどの手法を説明する。

本棚に登録&レビュー

みんなの評価(0

--

読みたい

2

未読

0

読書中

0

既読

2

未指定

7

書店員レビュー(0)
書店員レビュー一覧

みんなのレビュー

レビューはありません

Google Play で手に入れよう
Google Play で手に入れよう
キーワードは1文字以上で検索してください