
将棋AIで学ぶディープラーニング
山岡忠夫
2018年3月14日
マイナビ出版
3,498円(税込)
パソコン・システム開発
将棋プログラムの作成を通してディープラーニングをより深く理解できる。 2016年3月、プロ棋士に勝つには後10年かかると言われていたコンピュータ囲碁でDeepMindが開発したAlphaGoがトップ棋士に勝利しました。そのAlphaGoで使われた手法がディープラーニングです。 AlphaGoでは局面を「画像」として認識し打ち手の確率と局面の勝率を予測することで、次の打ち手を決めています。画像とは具体的にどのようなものか、次の打ち手をどうやって決めるのか?AlphaGoの論文をヒントに、ディープラーニングを使い棋譜を学習した将棋AIの開発を行います。強化学習のみでトップレベルの強さを持つAlphaZeroで用いられた手法についても取り入れています。 [導入編]では、コンピュータ将棋の歴史とディープラーニングの関係、コンピュータ将棋の大会の概要と参加方法について紹介します。 [理論編]では、実装する将棋AIの前提となる理論について解説します。従来のコンピュータ将棋のアルゴリズム、コンピュータ囲碁で用いられているモンテカルロ木探索とAlphaGoがどのようにディープラーニングを応用したか。基礎的な知識について解説しつつ、これらを将棋AIに応用する方法について述べます。 [実践編]では、ディープラーニングを使った、実際に対局できる以下の3つの将棋AIについて、PythonとChainerで実装していきます。 方策ネットワーク(policy network)を使って指し手の予測のみでプレイするAI。 価値ネットワーク(value network)を使って1手探索を行うAI。 方策ネットワークと価値ネットワークを使ってモンテカルロ木探索を行うAI。 最後に、より強い将棋AIを作りたいという方のために、ヒントとなる情報を紹介します。
close

ログイン
Readeeのメインアカウントで
ログインしてください
Readeeへの新規登録は
アプリからお願いします
- Webからの新規登録はできません。
- Facebook、Twitterでのログイ
ンは準備中で、現在ご利用できませ
ん。
X

LINE
楽天ブックスサイト
楽天ブックスアプリ




みんなのレビュー