
実践 データ分析の教科書 現場で即戦力になるデータサイエンスの勘所
株式会社日立製作所 Lumada Data Science Lab.
2021年8月26日
リックテレコム
2,860円(税込)
ビジネス・経済・就職
<B>データ分析スペシャリストの知見を凝縮!</B> データサイエンスは、業務を劇的に変革できるチャレンジングで、 かつ、エキサイティングな分野です。ただしそこでは、単純に データを収集し、それを各種統計理論に当て嵌めればプロジェクト は成功するものでしょうか? 本書は、日立製作所 Lumada Data Science Lab. のメンバーたちの叡智を凝縮した一冊です。 この中では、データ分析を行うための基礎技術や手順、 そしてプロジェクトを成功に誘うためのノウハウを懇切丁寧に 解説しました。 データサイエンスを業務に活用し社内DX化を図りたいIT担当者、 そして将来はデータサイエンティストになりたい人、必読の入門書です。 ◆本書の主な内容 第1章 データサイエンスの現場 1.1 ビジネスの現場で活躍するデータサイエンティストとは? 1.2 十人十色のデータサイエンティスト 1.3 データサイエンティストの一日 1.4 データサイエンスプロジェクトを成功させるには? 第2章 データサイエンティストになるには 2.1 高度な統計、数学知識が必要? 2.2 データサイエンティストが扱う代表的なツール 2.3 データサイエンティストとしての心構え 第3章 データサイエンスプロジェクトの進め方 〜失敗しないためには〜 3.1 データサイエンスプロジェクトの流れ 3.2 1業務課題の把握(プロジェクト起案) 3.3 2分析方針の設計 3.4 3データの理解・収集 3.5 4データの加工 3.6 5データ分析・モデリング 3.7 6分析結果の考察 3.8 7業務への適用 第4章 分野別に学ぶデータサイエンス 4.1 はじめに 4.2 数値解析(予測) 4.3 数値解析(予兆検知) 4.4 数値解析(要因解析) 4.5 画像認識(適用技術:Deep Learning) 4.6 テキスト解析(文書分類) 4.7 数理最適化(生産計画最適化) 第5章 データサイエンスの現場適用とは 5.1 分析結果を現場で活用するには 5.2 分析モデルの寿命?! 5.3 MLOpsという考え方 5.4 MLOpsを動かしてみよう 第6章 データサイエンティストの未来 6.1 データサイエンティストが不要になる時代が来る!? 6.2 データサイエンティストとして今後重要になるポイント 6.3 学び続けることの大切さ・楽しさ
みんなの評価(1)
starstarstarstar読みたい
1
未読
1
読書中
1
既読
1
未指定
9
書店員レビュー(0)書店員レビュー一覧
レビューはありません
close

ログイン
Readeeのメインアカウントで
ログインしてください
Readeeへの新規登録は
アプリからお願いします
- Webからの新規登録はできません。
- Facebook、Twitterでのログイ
ンは準備中で、現在ご利用できませ
ん。
X

LINE
楽天ブックスサイト
楽天ブックスアプリ
みんなのレビュー