ガロアに出会う

はじめてのガロア理論

のんびり数学研究会

2014年1月31日

数学書房

2,420円(税込)

科学・技術

「できれば高校生にも読める本にする」ことを目指した入門書です. ガロアが書き遺した方程式と数に関する理論をじっくりゆっくり学ぶ. ●第I部 第1章 プロローグ 1-2次方程式の解の表示法 2-ある3次式の展開計算 3-3次方程式を解いてみる 4-3次方程式の解法のまとめ 5-「代数的に解ける」ということ 第2章 集合と写像 1-集合と要素 2-集合の表わし方 3-部分集合,和集合,および共通部分 4-写像 5-単射,全射,および全単射 6-合成写像と逆写像 第3章 群 1-群の定義 2-いろいろな群 第4章 複素数と方程式 1-複素数と複素数平面 2-虚数単位iは 90°回転を表わす 3-1の3乗根 4-三角関数を使った表示法 5-ド・モアブルの公式 6-閉曲線の(原点のまわりの)回転数 7-代数学の基本定理 8-n次方程式にはn個の解がある 第5章 多項式 1-多項式 2-対称式 3-除法の定理 4-互除法と最大公約数 ●第II部 第1章 べき根で表わせるとはどういうことか 1-数体とはなにか 2-数体係数の多項式 3-単拡大P(θ) 4-複素数αがべき根で表わせるとはどういうことか 第2章 代数性,最小多項式 5-P-係数多項式の割り算,P上既約とP上可約 6-P上代数的,P上の最小多項式とは何か 7-θがP上代数的であるときのP(θ) 8-P(α_1、…、α_n) 9-α_1、…、α_nがP上代数的であるときのP(α_1、…、α_n) 第3章 ガロア拡大とガロア群 10-対称式の基本定理のP係数バージョン 11-ガロア拡大 12-Pをとめる自己同型とガロア群の定義 13-Pをとめる自己同型の性質(1) 14-15節のための準備 15-Pをとめる自己同型の性質(2) 16-ガロア拡大の3対(1) 17-中断ー群論の説明 18-ガロア拡大の3対(2) 第4章 べき根で表わせる数のガロア群 19-可解群の定義と目標の定理 20-2項拡大 21-次節の準備 22-定理19.3の証明 付録1 単拡大定理の証明 付録2 P(θ)=Kをみたすθについての補足 付録3 ヘロンとガロア 1-はじめに 2-7次方程式 3-ガロア登場 4-最初の困難 5-一難去ってまた一難 6-おわりに

本棚に登録&レビュー

みんなの評価(1

starstarstarstar 4

読みたい

0

未読

2

読書中

0

既読

0

未指定

0

書店員レビュー(0)
書店員レビュー一覧

みんなのレビュー

レビューはありません

Google Play で手に入れよう
Google Play で手に入れよう
キーワードは1文字以上で検索してください